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ABSTRACT

The sound distribution everywhere within a wedge-shaped fluid overlying either

a slow or a fast bottomAQ-een studied, in--hiseseareh>-,,Collecting all the results

of the previous works in this area and overviewing them has been the primary

purpose. All the cases reported earlier have been studied, and some new ones have

been added. The variation of the transition point distance with the shore distance

as a variable was observed. In addition~the isopressure patterns were verified by

calculating the pressure amplitudes in axial direction.. Cr' 7 up- C 't V-
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I. INTRODUCTION

Sound propagation in an ocean with a sloping bottom has received considerable

attention during recent years. Both tf-eoretlclaNs and experimentalists have been

involved with this subject [Ref 1-19]. They have created a number of acoustic

models to predict the sound field within a wedge shaped fluid overlying a penetrable

or a rigid fluid bottom.

The acoustic field in a wedge shaped shallow water duct with ideal boundary

conditions has been studied by Bradley and Hudimac[Ref. 1]. They have analyzed

the case of an isospeed duct with one pressure release and one rigid surface. The

theoretical analysis has been carried out in both image theory and normal mode

theory. The relationship between the two has been explored for the case of a point

source. The image sum was transformed via the Poisson transformation formula to

the normal mode sum. The average acoustic field was then compared for the two

approaches with good results. Also the two theoretical approaches were compared

with experimental data from the west coast of Florida with fair results.

Kuznetsov [Ref 2] used the method of images to investigate the high-frequency

field in a wedge. He showed that the method of images is better suited to the near

field where, in addition to the normal modes of the discrete spectrum. the

continuous spectrum plays a significant role. At distances from the source greater

than ten times the layer thickness. the normal mode method works better. These

results are based on the idealized model of a wave channel as a layer of water having

plane boundaries over a fluid half space. The sound field in a wedge was described



as the sum of the image-source fields taking account of the coefficient of all

reflections. A point source was used in a wedge with perfectly reflecting boundaries.

Kuznetsov in another study [Ref 3], has described the displacement of the(

normal modes which takes place in the vertical plane and causes each normal mode

to emerge from the wedge into the half space at a certain distance, specific to tile

normal mode, from the vertex line of the wedge.

In 1975 Graves, Nagl, and Uberall [Ref 6] used the adiabatic range variation

method, derived by Pierce and Milder [Ref 4,5], to perform an approximate

separation into normal modes for the problem of an under-ocean channel wit],

gradual range dependence of medium and boundaries. Their technique was

illustrated by application to the isovelocity ocean wedge with rigid ocean floor, and

compared with the exact solution of Bradley and Hudimac [Ref 1]. A good

agreement was obtained for moderately large wedge angles. even when mode

coupling was neglected.

In 1978, Coppens, Sanders, Ioannou and Kawamura [Ref 7]. using computer

models., predicted the acoustic pressure amplitude and phase in the upslope direction

at the bottom of a wedge shaped fluid layer overlaying a fast fluid. The slopes of

the wedges studied were about 2.40 or 2.70. One of the models had infinite source

distance while the other had the source at finite distance. The program outputs

were compared with the experimental results using as variables the wave number

and density. There were significant differences between the simple model and the

experimental results because of the experimental limitations.

The results of shallow water acoustic experiments performed off the coast of

Corpus Cristi, Texas, have been compared with theoretical computations by Rubano
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(1980) [Ref 8]. A four-layer, fluid, normal-mode model was used to predict tho

group velocity dispersion and spatial amplitude distributions of the first and second

modes. The results show good agreement between the measured and theoretical

values.

In the same year (1980), comparison between experiment and theory was made

by Jensen and Kuperman [Ref 9]. They used the parabolic equation model to study

the modal cutoff during upslope propagation in a wedge-shaped ocean. They found

that the cutoff is not abrupt but takes place over a finite distance which essentially

provides an aperture for radiation of a beam into the bottom. Also the Gaussian

representation of a point source in the PE model has given very good results in the

presence of a bottom.

The modal cutoff during upslope propagation has also been studied by Pierce

(1982)[Ref 10]. Since the adiabatic mode theory for upslope propagation in shallow

water breaks down when the depth decreases to a critical value, he has used

matched asymptotic expansion techniques to yield the acoustic pressure in the

transition case. The derived characteristic critical-depth transition function give

results which are in accord with computations reported by Jensen and Kuperman

[Ref 9].

The same subject. the modal cutoff during upslope propagation, was studied b%

Arnold and Felsen using the image theory as a convenient starting point for

collective treatment of ray fields and their conversion into local modes [Ref 11].

The numerical comparisons with the results of Jensen and Kuperman [Ref 9] showed

good agreement.

The sound field in an absorbing fluid substrate underlying a wedge shaped fluid

with higher sound speed has been studied by Coppens, Sanders, and Humphries in

3



1984 [Ref 12]. A Green's function extension of the image theory give thi..

opportunity of doing all the calculations on a computer. Two differeilt

approximation methods were used. The end-point approximation gave solutions

valid at great distances, and for absorptions representative of sedimentary

materials. The saddle-point approximation has given good results under the apex.

with no limit in the absorption.

In 1984 Baek [Ref 13] predicted the pressure amplitude and phase, everywhere

within the wedge, in upslope direction, having a fast bottom. Three cases were

studied, pressure release bottom, rigid bottom, and penetrable bottom.

In the same year (1984) LeSesne [Ref 14] studied and compared two computer

programs using the method of images to determine the pressure and phase

distribution. It was concluded that an infinite source is not approached until the

source exceeds six hundred dump distances from the apex. All measurements were

taken directly upslope with source distance equal to forty dump distances and the

receiver on axis with the source. Comparison between the two programs show

similar results.

One year later, in 1985 Borchardt [Ref 15] experimentally measured the sound

pressure field everywhere within isospeed water overlying a sloping absorbing

bottom. The experimental data were compared with the program developed by

LeSesne [Ref 14]. The results showed that the program successfully predicts the

on-axis upslope sound profile in a wedge--shaped medium. Particularly.

measurements showed good agreement for R2 5 10 , 3 = 9.50, p1/P2 = 1.1 and

YOS50. All the symbol definitions are given in the List of Symbols table.

A shallow water wedge with a slope up to 90 has been experimentally studied

by Tindle. Hobaek, and Muir in 1986 [Ref 16]. They presented experimental results

4



for downslope propagation and they defined the wedge modes as propagating normal

modes with wavefronts which are curved into arcs of circles centered on the wedge

apex.

In 1987 Kaswandi [Ref 17], studied the slow bottom case. The outputs were

taken for the on-axis case with wedge angles of 60, 100, and 150. Three kinds of

curves were observed, depending on the source distance.

At about the same time, a program with 3-D capabilities was used by Li [Ref

18] to predict the acoustic pressure distribution along the interface between a

wedge-shaped fluid layer overlying fast or slow bottom. It was concluded that the

major clharacteristics of the output graphs were insensitive to minor variations of

the bottom.

In 1988 Doolittle and Tolstoy presented experimental data obtained in East

Australian Continental Slope consistent with the theory of energetic horizontal

refraction due to multiple reflections from a sloping bottom [Ref 19]. When viewed

from above, the path of the ray appears to curve. As a result,the exact position of

the source can be obtained from the details of this curvature.

The purpose of this research is to take all the outputs provided by the theses of

Kaswandi and Li and try to build a physical understanding of the acoustic field from

them. Also an attempt was made to obtain detailed comparisons between the

DSLOW and 3LS4 programs for the same inputs,and to further investigate the

transition point.

5



II. THEORY

The theoretical background of this research has been presented by Coppens.

Sanders, Ioannnou and Kawamura [Ref 81. What follows, in this chapter. is a

summary of the most important points of the image theory and its application to

the wedge-shaped ocean with penetrable bottom.

A. METHOD OF IMAGES

The assumptions that (1) the speed of sound is the same everywhere within the

wedge and in the penetrable bottom and (2) the upper surface is a pressure release

surface makes the method of images an appropriate approach for understanding the

sound field in a wedge-shaped fluid. The sound paths are straight lines and the

plane wave Rayleigh reflection coefficients, discussed by Kinsler. Frey. Coppens

and Sanders [Ref 14], is a good approximation if the sound source is not too close to

the bottom.

The geometry of the model used to predict the pressure amplitude and phase

everywhere within the wedge is shown in Figure 1. For the wedge-shaped duct.

cylindrical coordinates are used with the shore line as the axis (Figure 2). The

images lie on a circle centered on the shore line.

In Figures 3 and 4, the relationship between the receiver and the nth image is

shown. The angle On of the nth image, measured from the bottom, is given by:

O= B.(n-1)+G, for n odd

O0 =B-n-G forneven

6



According to Sommerfeld's concept of an extended Riemann surface. ih 

extension of the 6 coordinate makes the number of images infinite. The tota!

pressure and phase at any field point within the wedge is found by coherent

summation of all spherical waves radiated from the infinite number of images. As

the number of reflections associated with a given image increases, the pressure

contribution of this image decreases. The infinite summation is approximated by

taking the sum over N images where

n = INTEGER (180 / )

Wedge angles of the form r,/n have been used, where n is an integer, because

diffraction terms were eliminated [Ref 2].

The distance Rn between the receiver and the nth image is given by:

Rn 1R1
2+ R2

2 _- 2.R1 R2 .cos(0n-D) + Yo2

for the upper group of images, and

Rn = R1
2+ R2

2 - 2.RIR2cos(On+D) + N'2

for the lower group images.

The angle of incidence nm of the nth image on the mth plane ( described by the

angle m./1)is

7



Si~nm [RI.sin(O.- m3~)+ R2'sin(m3 - D)]

The reflection coefficients R(On) for the upper family of images and R(O ') for

the lower family of images for a plane wave are

Plc1

P2C2 - 'n
R(Onm) = PC, + 'Pa

P2C2

and

pici
P22- T'm

R(8') Pic'~ + ~~'
P2C2

where

*n i (Cl/C2 )2Cos2(Onm)
sin(8n.)

and

T1 n'm i-(C,/C2 )2Cos2(8DI 3 )-

sin(On'm)

The resulting complex pressure from the upper family of images is
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N

Pu - 1 exp(-jkRn).()INT( )/ 2] i R(On)
n=1 Rn m=0

and the resulting complex pressure from the lower family of images is

N
Pl )-_ ex(_jkn,)(_lINT[(n+l)/2]

Pi- n- 11 R(On'm)

n=1 Rn' m=O

The sound field radiated by each image has been multiplied by the plane wave

reflection coefficients corresponding to reflections encountered by the wave as it goes

from the source to the field point.

The total complex pressure distribution P is the sum of the Pu and PI:

P = Pu + P1

B. NORMALIZATION

All distances are normalized in terms of the characteristic distance X.. Thii is

the distance measured from the apex along the wedge interface to the point at which

the lowest mode attains cut off as shown in figure 5 [Ref 20].

The characteristic distance is defined as the distance from the shore at which

the depth H is given by

7r

k.H=
2 V/I - C,

C2

9



For a fast bottom, the critical angle O, is

Cl =COSp c

C2

since

kH=
2sin Pc

tan 3 =, H

X

2 sin[8c] tan

The above formula gives the derivation of the characteristic distance X in the

case of a fast bottom (c1 < c2 ). When slow bottom case is studied (c, > c.,). the

characteristic distance can not be defined as above. A useful characteristic distance

for slow bottom can be defined by inverting CI/C2

kX= T
2 tan[arcos(c 2 /cl) ] tanO

The advantage of working with normalized distances is that the analysis is

frequency independent.

A convenient normalization for the pressure amplitude is accomplished by

multiplying the pressure amplitude at one meter from the source by the source

distance (RI). This simplifies the interpretation considerably, especially in the case

of large source-apex distance compared to X.

10



In the course of this research, a computer program has been created, the DEME

program. This computer program provides an additional normalization. 11

normalizes all the pressure amplitudes to the first pressure measurement taken down

from the surface. This slope normalization makes the shapes of the curves

comparable, even if they have been obtained at different distances.

11



III. COMPUTER PROGRAMS

Two programs have been used for the purpose of this research. They are

improved and more documented versions of the programs discussed by Kaswandi

[Ref 17] and Li [Ref 181. They use the same model but have different output

displays.

A. PROGRAM DEME

In the beginning of the study reported in this thesis, the DSLOW program was

obtained [Ref 17]. DSLOW is itself an improved version of the WEDGE and

XSLOPE programs developed by Kawamura and loannou [Ref 7], and LeSesne [Ref

14] respectively.

DSLOW was developed to run on the IBM 3033 main frame of the Naval

Postgraduate School. It uses the method of images to predict the pressure amplitude

and phase within the wedge fluid overlying a slow bottom.

DEME, created from DSLOW, uses the same model to predict the pressure

amplitude, and phase within the wedge fluid overlying a slow or a fast bottom.

The output is given in a table format or in a graph as shown in the Appendices.

The DISSPLA graphics package and the EASYPLOT program, both of them

available on the IBM 3033. have been used for the graphical outputs.

During this research, other versions of the original DEME program have been

created with different outputs. All of them have been stored under Professor

Coppens' account in the IBM 3033 in the Naval Postgraduate School.

12



The most important of these programs are:

1. Program S provides the pressure amplitude and phase at one specific point in

the field. It must be used with the "Record on" command of the IBM 3033 for

sending the results in a separate file.

2. Program SDF is a version of the DEME program which takes the input data

from an input file and transfers the output to another file. With this technique the

EASYPLOT program can be used to produce multiple graphs.

3. Program PREC uses double precision to reduce round-off errors. The outputs

of PREC can be plotted with any other graphics software except DISSPLA. The

DISSPLA package has some difficulty when applied to the output of double

precision fortran programs.

4. Program SLAl generates graphs without the slope normalization.

B. PROGRAM 3LS4

This program gives alternate forms of data presentation. It uses the IBM 3033

and the DISSPLA package to generate a 3-D representation of the pressure

amplitude distribution on the bottom or along any plane (defined by the D) within

the wedge. It also provides a contour presentation of the same data.

Because of the large volume of numerical output, 3LS4 is ineffective fo:

recognizing details.

An important limitation of the program is that the array containing the data

must be initially dimensionalised to the exact size of the data file array. This

information is normally passed from the data file during the program.

13



IV. DISCUSSION OF THE RESULTS

The DEME and 3LS4 programs have been created using the same model.

Although they provide different output graphs they must agree at every point. The

3LS4 provides the pressure amplitude and phase on a plane defined by the receiver

angle (D). The DEME program provides the pressure distribution and phase along

a vertical line anywhere within the wedge. The programs were checked for both

slow and fast bottoms. For the same input data, they gave the same outputs. as

shown in Tables I and 2.

For a slow bottom (c, > C2), three different types of curves of pressure amplitude as

a function of depth have been observed. The same types of the curves have been

noticed by Kaswandi [Ref 17] and are shown in Figure 6.

When the source distance (RI) is much smaller than the characteristic distance

(X). the sound pressure is linearly dependent on receiver angle with the surface

pressure equal to zero and the bottom pressure a maximum (R1 = 0.1) When R1

approximates X , the curve develops considerable curvature (RI = 0.7).

Vhen the source distance (R1) is slightly different from the characteristi(

distance X (RI = 1.1), then a maximum and a minimum appear between the

surface and the bottom.

When the source distance (R1) is greater than the characteristic distance (X)

(R1 = 4), then the sound pressure has a maximum between the surface and the

bottom. No minimum appears in this kind of the curves. When the value of R1 is

much greater than X , several minima and maxima appear in the output curve

(RI= 12).

14



Figure 7 shows the development of the second type of curve (RI = 1.0) as 0the

receiver distance is varied.

For the same input data ( B = 10, G = 5, p/p2 = 0.9), the fast bottom gave

entirely different curves as shown in Figure 8. When the source distance (RI) is

less than three times the characteristic distance (X), only the first mode is received

everywhere within the wedge (R1 = 0.3, 1.1, 1.3). When R1 > 3. higher modes are

excited and the curves are the superposition of several modes (R1 = 4).

A. TRANSITION POINT

For the slow bottom, when the source distance (R1) is about the same as the

characteristic distance (X), the curve has a maximum and a minimum. The

minimum is close to the bottom. A "transition point" has been defined by

Kaswandi [Ref 17] as the receiver distance, for which the pressure above a minimum

extrapolates to zero on the bottom.

Three examples are shown in the Figure 9 (R2 = 4.6, 6.4, 32). In all of them

the pressure above the minimum can be extrapolated to zero pressure point at the

bottom. The transition point phenomenon happens for source distances 1<Rl<1.5.

For 1 < R1 < 1.5 the shape of the pressure curves as the receiver distance

(R2) is varied can be explained as follows: as the receiver is moved from (R2 = 1 .5,

to (R2 = 30) the minimum pressure amplitude decreases in magnitude and the

first transition point is observed (Fig 7). With further increasing of R2. the

minimum pressure amplitude of the curves decreases to a minimum value, and then

increases arriving at a second transition point. For the receiver distances bet..een

the first and the second transition point, the extrapolation to zero pressure was

observed to be above the bottom (Figure 7). With further increasing of R2, a third

15



transition point tries to form but, since the R2 is so large round-off error appears

in the program output curve and the curve characteristics can not be easily

recognized. In the figure 10, the locus of the two detectable transition points are

shown as a function of R2 and the shore distance (YO). Although it is not indicated

in the figure 10 the points lie on circular arcs centered at the source. This may

indicates that the transition point obeys the cylindrical spreading law.

The locus of the first and second transition points form curves which can be

approximated by arcs of circles centered at the source (figure 10)

The transition point as a function of the source angle (G) was studied using the

output data shown in Table 3. As the source angle changes, the transition point

moves to a different receiver distance. Two different wedge angles were observed.

The greater the source angle (G) , the smaller the receiver distance where the

transition point occurs.

A possible explanation is that, by increasing the G the source is placed far from

the angle value (D), where the minimum happens, so the absolute pressure values

become smaller as the source angle increases. In figures 10a and 10b the pressure

distribution of the bottom is shown for G = 2.50. In figures 10c and 10d the same

case is represented with G = 7.5° . These figures are generated with the program

3LS4 [Ref 18].

In the fast bottom case no transition point was observed. In Figure 11 the fast

bottom case is shown when the shore distance (YO) varies. This is the case of

downslope propagation in a wedge-shaped fluid overlying a fast bottom. At the

receiver's position (R2 = 32), as the shore distance is increasing ( 0 < YO < 80).

only a curve like the first mode appears and no minimum is observed.
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B. MORE CASES

For the fast bottom, when the source distance (RI) is bigger than 3, the higher

modes start to appear. In Figure 12, Ri = 6. As explained by Kaswandi [Ref 17

when RI = 6 the first three modes are present. By increasing the source angle (G)

the output curve changes because at some source positions some modes are reduced

and some are amplified.

Some problems appear when the source is very close to the apex (RI =0.1), as

in Figure 13. The program seems to fail close to the bottom. It may be a round-off

error of the computer because the absolute pressure values are very small. The

round-off error is clearly shown in Figure 14, where it starts to appear when the

source-receiver distance becomes too far. An attempt to eliminate this problem

was made in the PREC program which was a double precision version of the DEME

program. Also another try was made to run the DEME program in a 386 IBM

compatible personal computer with 16-bit memory. Both of the tries gave

smoother curves but they did not solve the problem.

C. SHORE DISTANCE AS A VARIABLE

Until now most studies were for on axis receiver positions (Y0 = 0). In the

following discussion the shore distance (YO) is the variable. In slow bottom three

different source distances (R1) were studied (RI = 0.5 , RI = 1 and Ri = 5).

The first case is shown in Figure 15, where the source is close to the apex (R1=

0.5). At receiver position R2 = 4 , only the linear pressure curve is observed at all

values of YO (0 < Y0 < 60).The effect of larger values of source and receiver

distance (Rl= 1, R2= 6) is shown in Figure 16. As YO increases, the curve forms a

transition point at YO = 3 and then becomes a straight line at YO = 10.
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Figure 17 illustrates the case when the source distance is greater than the

characteristic distance ( R1 = 5). Curves for four different values of YO are shown.

The same cases were studied also for the fast bottom. The outputs are shown in

Figure 18 when the source distance is close to the apex(R1 = 0.5), in Figure 19

where RI = 1, and in Figure 20 where the RI = 5. What is clear to be observed in

these cases is the uncertainties, which are present in great distances. Also when

R1 > 3 the higher modes start to appear.

D. ANGULAR OUTPUTS

Examination of the contour plots revealed a general hyperbolic or elliptical

pattern, therefore another try was made to understand the physical structure of the

acoustic field by searching at some particular angle off the axis ( arctan[YO/R2] ).

As shown in Figure 21 output data were calculated every 100 off the axis. The

acoustic field was studied for two different source positions, for a small source

distance(R1=0.5) and for a source distance greater than the characteristic distance

(RI=10).

The bottom pressure distribution is shown in Figures 22 through 2.5. The slow

bottom as well as the fast bottom has been studied. From the contour plots

(Figures 23 and 25) it would appear that large values of the axis angle were more

interesting, because the isopressure curves seem to be asymptotic to the axis angles.

In the Figures 26 through 28 , the pressure distribution along three different

angles are shown for the slow bottom. The curves are unnormalized.

The fast bottom graphs for the same inputs are shown in Figures 29 through 34.

Many different axis were studied from 00 to 900. All the curves from 00 up to 700

seem to be the superposition of the first five modes (Figure 29, 30,and 31). From
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750 axis angle and for big receiver distances (R2) the graphs begin to have only the

first mode. That means that the higher modes have been cut off. At 800 all the

outputs appear to be in the area where only the first mode is received. The R2 in

all the graphs was varied between 10 and 60.

The slow bottom curves for any angle off the axis were observed to have

uniform vertical pressure profiles as shown in Figures 26 through 28. The fast

bottom curves for angles up to 800 were observed to have complicated profiles as

shown in Figures 29 through 32.

D. THE OTHER PARAMETERS

Variations of the other parameters such as the velocity ratio ci/c2 and the

density ratio pI/p 2 were studied by Kaswandi [Ref 171 for on axis measurements.

The results showed no strong variation of parameters studied.
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V. CONCLUSIONS AND RECOMMENDATIONS

In this research, the 3-D propagation of sound has been studied using the image

theory. Two computer programs were used to provide the pressure amplitude

distribution and phase everywhere within a wedge-shaped fluid overlying a fast or a

slow bottom.

The DEME and the 3LS4 programs were checked for the same input data and

they provided the same outputs for the same acoustic field points. After this check.

it was concluded that the programs were consistent with each other.

The transition point, present only over the slow bottom, was studied at various

places inside the wedge. It was found that all the curves could be approximated by

concentric circular arcs, having the source at the center.

As the source angle (G) increases, it was concluded that the transition point

distance decreases as it is shown in Table 3.

When the source position is 1.1< R1 < 1.5 then two transition point curves

were formed. Sometimes it was possible to have also a third one, if the computer

could work with very small numbers (16 or 32 bit Bus).

The off axis data were taken along many angular axes. The slow and the fast

bottom were studied for the same angles of axis. The slow bottom data showed very

small variation of the pressure amplitude values as the receiver distance was

increased. The fast bottom curves showed very clearly the wave guide cutoff

phenomenon. In all the axis angles up to 800 the curves were observed to be

irregular with many variations and unique for each R2. At the angle of 800 or

more, no major variations were observed as the R2 was increased. This observation
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was found to be consistent with the contour plot output data taken from the 3LS'

program.

This research was another phenomenological theoretical step toward elucidating

features of the wedge problem. Some experimental data must be compared with the

two programs DEME and 3LS4 to have some confirmation of the programs

capabilities. The most interesting case seemed to be the slow bottom case.

Current thoughts [Ref 23j suggest that these features can be studied from

another point of view based on a collection of dipoles. The source and its first

image form a dipole as do other associated pairs of images (Figure 1). If all these

pairs of images are considered, then the field can be considered to be formed from

the near cancellation of equivalent dipole pairs lying at slightly different distances

from the receiver.
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APPENDIX A

TABLE 1

CONSISTENCY OF THE DEME AND 3LS4 PROGRAMS (SLOW BOTTONM)

B = 10 0, G =50, YO =50, Ri =40, R2 = 10, pl/p2 = 0.9, clfc2 = 2

RECEIVER OUTCOMING PRESSURE AMPLITUDE

ANGLE D DEME 3LS4

00 0.5073 0.50728

01 0.8683 0.86828

02 1.4251 1.42509

03 1.8969 1.89691

07 1.8491 1.84919

10 0.0000 0.00000
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TABLE 2

CONSISTENCY OF THE DEME AND 3LS4 PROGRAMS (FAST BOTTOM'

B = 100, G =50, I = 40, R2 =35, pj1 p2 = 0.9, Cl/C 2 = 0.9

RECANGLE SHORE DIST. PRESSURE AMPLITUDE OUTPUT

D Yo DEME 3LS4

00 00 9.5446 9.54476

00 30 2.5776 2.57740

00 50 3.2210 3.22089
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TABLE 3

TRANSITION POINT AS A FUNCTION OF SOURCE A.NGLE (;

PI2= 0.8, cl/c 2 = 1.1

WEDGE SOURCE SOURCE RECEIVER

ANGLE (B) ANGLE (G) DIST.(RI) DIST.(R2)

100 2.50 1.0 33.0

100 5.00 1.0 24.0

100 7.50 1.0 22.0

060 1.50 1.3 5.9

060 3.00 1.3 5.7

060 4.50 1.3 5.4
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APPENDIX C
DEME PROGRAM

This program calculates the pressure amplitude and phase everywhere within
a wedge shape fluid overlying a penetrable bottom. It is a modified version of the
DSLOW program, which was written by CASWANDI. It has been modified by
LT.D.PALIATSOS on March 89. This program is working for fast or slow bottoms.
The output data are given by a table or by a graph using DISSPLA.

INTEGER A,I,I1,M,N,S1,S2,NI,J,K
REAL*4 B,CC,C2,D,D 1,D2,G,PI,P 1,P2,Q1,R1,R2,T,

* T4,T6,WO,W1,YO,Y1,Y2,Z1,Z2,Z3,Z4,Z5,Z6,
* TI (80),R8(80),R9(80),S(30),C(30),E(30),
* F(30),Y,Z,R3,ALPZ(30),DZ(30),V,DX,XP,DD,PN(30)
REAL*4 TQQ,TQQ1,TQQ2,TQQ3
PI =ACOS(-I.0D00)

C INPUT PARAMETERS

C B = WEDGE ANGLE (DEG)
C G = SOURCE ANGLE (DEG)
C D = RECEIVER ANGLE (DEG)
C N1= # OF IMAGE POINTS
C RI = SOURCE DISTANCE (IN DUMP DISTANCES)
C R2 = RECEIVER DISTANCE (IN DUMP DISTANCES)
C YO = APEX DISTANCE (IN DUMP DISTANCES)
C Dl = RHO I/RHO 2
C CC = C-1/C-2
C AL = ALPHA/K2
C A = # OF RECEIVER POSITIONS

C INITIAL INPUT RELATIONS

B=5.5
G =2.75
D 00.0
R1 = 1.3
R2 = 9.0
YO = 2.0
Dl = 0.80

C DO 90 P = 1,4
C
C YOU MUST GIVE THE INFORMATION ABOUT THE BOTTOM, THAT
C MEANS YOU MUST CHOOSE SLOW OR FAST BOTTOM BY GIVING
C SOME VALUE TO THE SPEED RATIO CC = C1/C2.
C
C CC=C1/C2
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CC =1.1
AL = 0.0001
A=10

C MAIN PROGRAM

K 0
Ni = INT(180./B)
T6 = 180. /Pl
B =B/T6
G =G/T6
C2 = CC**2
D2 = (YO*Yo)+(R1*R1)+(R2*R2)

R3= 2.*R1*R2
C T4 = PT! (2*TAN (ACOSl (/CC))*TAN (B))

cTQQ = TAN(B)

C DECISION ABOUT SLOW OR FAST BOTTOM
C

IF (CC.LT.1) THEN
TQQl =ACOS(CC)
TQQ2 = SIN(TQQ1)

C T4 = PI/(2*SIN (AOS(CC))TAN(B)) ***FAST CASE
ELSE

TQQ1 = ACOS(l ICC)
TQQ2 = TAN (TQQ1)

C T4 = PI112*TAN(ACOS(1/ICC)) *TAN (B) SLOW CASE
ENDIF

C
TQQ3 = 2.*TQQ2*TQQ
T4 = P1 /TQQ3

C KIX= P I/(2*TQQ*TQQ2)
D2 = YO*YO+Rl*R1+R2*R2
Q1 = I/DSQRT(2.ODOO)

C300 FORMIAT(' NOP I,7X,'THETA(N) ',7X,'IMGE SR R8 %71 X,
C - IMGE SR R9)
C WRITE (6,300)
800 FORM AT(5X 'REC. POS',5X, 1 REC.ANGLE 1,5X,'PRES.AMPLITUDE .,5x.

* 'PHASE ANGLE ',SX,l NORM. PRESS')
WRITE (6,800)
DO 10 M=O,A

D = M*B/A
DD=B/IA

V 2*B/10
IF( LT.V GOTO 110
IF( D.E-.V) GOTO 120

110 DX= D
DO 15 J = 1,10

D = DX+(J-1)*B/(10*A
DD = B/(10*A) A

120 Si = 1.0
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DO020 N =i,Ni

IF( S1LT.0) Ti(N)=N-B-G

RS (N) = S QRT (D2-R3*COS (Ti N -D))
R9(N) = SQRT (D2-R3-COS(Ti N +D))

C310 FORMAT(3X,I2 ,5X,F5.2,4X,F6.4,6X,F6.4)
C WRITE (6,310) N,TI(N),R8(N),R9(N)
20 CONTINUE

Pl = 0.0
P2 = 0.0
DO030 N =1,Nl

S2 = (-l)**(INT(N/2))
Wi 2*C2*AL
Il = INT((N-i)/2)
DO 40 I = 1,11

S(I) = ABS(Rl*SIN(TI(N)-2*1*B)
* ±R2*SIN(2*I*B-D?) )/RS(N)

C(I) = SQRT(1-(S(* (I)))
T = S(I)/Di
WO = (-~C2+I(C(I)*C(I),)
Y = SQRT((WOW) (WV*W1))
Z =ABS(WO)
IF(Y.LE.Z) Y = Z
Yl = Q1*SQRT(Y±WNO)
Y2 = -Q1*SQRT(Y-W0)
Zi = T-YX2
Z2 = -Yl

C Z12= CMPLX(ZlRZ21)
Z3 = Zi ( Zl*Zi+Z2*Z2)
Z4 =-Z2f(ZI*ZI±Z2 Z2)
Zi = T+Y2
Z2 = Yl

C Z13= CMPLX(Z3RZ4I)
Z5 = Zi*Z3-~Z2wZ4
Z6 = ZI*Z4+Z2*Z3

C Z14= CMPLX(Z5R,Z61)

C400 FORMAT (NOP ',5X,'I ,5X,ARSIN(S(I)*T6),5X,'E(I)',
C * 5X,'F(I +),5X,
C * 1 DSQRT(E(I)*E(I)+F(I)*F(I))I,5X,?T6*ATAN(F(I)IE(I))I)
C WRITE (6,400)
C420 FORMA T(3X,12.6X,12,5X,F6.4,10OX, F6.4,3X,F6.4,3X,F6.4, 1OX.F7.4)
C WRITE (6,420) NI, ASIN(S(l))T6,E(I),F kC * SQRT(E(I)*E(I)+F(I)*F(I)),AT FI/~)

40 CONTINUE
zi = 0
Z2 = 0
Z3 = 0
Z4 = 0
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Z5 = 1
Z6 = 0

IF(N.LE.2.00) GOTO 50
DO 45 I1 1, Il

Z2 = F I)
Z3 = Z5
Z4 = Z6
Z5 = Z1*Z3-Z2*Z4
Z6 = Z1*Z4+Z2*Z3

45 CONTINUE
50 Z1 Z5

Z2 =Z6
T = T4*R8(N)
Z3 = COS(T)
Z4 = -SIN(T)
Z5 = Z1*Z3-Z2*Z4
Z6 = Z1*Z4+Z2*Z3
P1 = P1+S2*Z5/RS (N)
P2 = P2+S2*Z6/RS (N)

C500 FORMAT(' NO.OF .P ',3X,'RE(REFL)= ',3X,'IM(REFL)=')
C WRITE (6,500)
C510 FORMAT(3X,12,6X,F6.4,6X,F6.4)
C WRITE (6,510) N,S2*Zl,S2-Z2
C600 FORMAT(' I,.5X,IARCSIN(S(I))-T6=,XIE),X,().xEF
C * 5x" AN2)
C WRITE (6,600)

11=11+1
DO 60 1 =1, 11

S(I) =ABS(R1 *SIN (T1I N-* 1*B
+ R2*SIN(2 *B1+Si)/9(N)

C(I) =SQRT(1-S(I)*S(l))
T = S(I) IDl
WOT =.C2+C(I)*C(l)
Y =SQRT((WO*WO)+(WN,1*Wl))

Z =ABS(NVO)
IF(Y.LE.Z) Y = Z
Yl = Q1*SQRT(NY+WO)

Y= -~Q1*SQRT(Y-W0)
ZI = T-Y2
Z2 =-Yl
Z3 = Z / (Z1*Zl+Z2*Z2)
Z4 = - Z2/Z*lZ*2
ZI = TY
Z2 = Y
Z5 = Z1*Z3-Z2*Z4
Z6 = ZI*Z4+Z2*Z3

ANI= ASIN (S(l))*T6
EF = QT(EI )*E(I)+F(I)*F(I))
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AN2= ATAN(F(I)/E(l))"T6
C61 0 FORMAT(2X,I2,5X,F6.4 ,5X,F6.4 ,5X,F6.4,5X,F6.4 ,5X,F7 .4)
C WRITE (6,610) I,AN1,E(I),F(I),EF,AN2

60 CONTINUE
ZI = 0
Z2 = 0
Z3 = 0
Z4 = 0

Z5= 1
Z6 = 0

DO 801I 1,11
ZIE

Z3 =Z5

Z4 =Z6

Z5 =Z1*Z3-~Z2*Z4

Z6 =Zl*Z4±Z2*Z3

80 CONTINUE
Z1 = Z5
Z2 = Z6
T = T4*R9(N)
Z3 = COS(T)
Z4 = -SIN(T)
Z5 = Z1*Z3-Z2*Z4
Z6 = Zl*Z4+Z2*Z3
P1 = P1+S2*Z5/R9 (N)
P2 = P2+S2*Z6/R9 N)

C700 FORMAT(' LOWER PATH NO=',3X,'RE(REFL)=,'3X.'IMN(REFL)=')
C WRITE ( 6,700)
C710 FORMAT(6X,12,12X,F6.4,12XF6.4)
C WRITE (6,710) N,S2*Z1,S2-Z2

30 CONTINUE
K=K+1
DZ(K)=D*T6
PZ(K)=SQRT(P1*P1+P2*P2)*R1

C WRITE (6,810) K,DZ(K),PZ(K),ATAN(P2/P1 ),PN(K)
C810 FORMIAT(6X,13,1 1X,F5.2,12X,F7.4,12X,F7.4,1OX,F7.4)
15 CONTINUE
10 CONTINUE

DO 31 L=1,29
XP=PZ(28)
PN(L)=PZ(L)/XP
WRITE (6,811) L,DZ(L),PZ(L).ATAN(P2/P1 ),PN(L)

811 FORMAT(6X ,13,1 1X,F5.2,12X,F7.4,12X,F7.4,IOX,F7.4)
31 CONTINUE

C250 FORMAT(' WEDGE ANGLE = 0,F5.2,lX,l SOURCE ANGLE 1,F4.2.1X.
C * 'SOURCE DISTANCE=',F4.2,1X,'RECEIVER DISTANCE= ',F4 .2. IX,
C * 'SHORE DISTANCE= W,4.2)
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C WRITE (6,250) B-T6,G*T6,R1,R2,Y0
C270 FORMAT(' RHOl/RHO2=-,F5.2,5X,' Cl /C2- .F.5.2..5N.'
AIPHA/K2=',F8.4)
C WRITE (6,270) D1,CC,AL
C YO=YO+2
C R2 R2+2
C R1=R1+2
90 CONTINUE

B =B*T6
G =G*T6

C STOP
C END

C A PROGRAM FOR PLOTTING BY TEK618 OR SHERPA

CALL MEDBUF
CALL TEK618

C CALL SHERPA ('SLOWDEM 1 11A1,3)
CALL NOBRDR
CALL PAGE(15.,12.)

C CALL PAGE(8.5,11.)
CALL HWROT('AUTO')

C CALL AREA2D)(09.,5.)
CALL AREA2D(09.,7.)

C CALL AREA2D (8.5,6)
C CALL AREA2D (6 .0,8.5)

CALL HEIGHT(.2)
CALL XNAME ('NORM. PRESSURE AMPLITUDE$1,24)
CALL X'NAME ('RECEIVER ANGLE(DEG)$1,19)
CALL YTICK 5)
CALL XTICKS S5)
CALL GRAF(0.,2.0 ,10.0,0.,1.0,6.0)

C CALL GRAF(0.,1.0 ,05.0,0.,l.0,06.0)
CALL DOT

C CALL GRID(2.2)
CALL HEADIN ('REC. ANGLE VS. NORM.PRESSURESI.-100,1.8.1)
CALL MESSAG('WNEDGE ANGLE =$1,100,8.,7.)
CALL REALNO(B,2,10.2,7.) I
CALL MESSAG('RHO l/RHO2 =$',100,8.,6.5)
CALL REALNO(Dl,2,10.2,6.5)
CALL MESSAG 'C1/C2 =$1,100,8.,6.0)
CALL REALNO CC,2,l0.2,6.)
CALL MESSAG 'SOURCE ANGLE= V,100,8.,5.5)
CALL REALNO G,2,10.2,5.5)
CALL MESSAG 'SOURCE DIST.= $',100,8.,5.)
CALL REALNO R1,2,l0.2,5.)
CALL MESSAG 'REC.DIST. = S'1100,8.,4.5)
CALL REALNO R2,2,10.2,4.5)
CALL MESSAG 'SHORE DIST.= S',100,8.,4.)
CALL REALNO YO,2,10.2,4.)
CALL MESSAG 'PRESS. AMPL. (X=l1) = $' ,100,7.0.3-5)
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CALL REALNO(XP,105,1O.2,3.5)
CALL RESET('ALL')
CALL PARA3
CALL NOCHEK
CALL CIJRVE(PN,DZ,29,I)
CALL ENDPL(O)
CALL DONEPL
STOP
END

69



LIST OF REFERENCES

1. Bradley, D., and Hudimac,A.A., The Propagation of Sound in a Wedg(
Shaped Shallow Water Duct. pp.2-9, The Catholic University of America,
1970.

2. Kuznetsov, V.K., Method of Virtual Sources in the Underwater-Acoustical
Description of High-Frequency Sound Fields in a Wedge. Soviet Physics
Acoustics, 18, No 2, pp 223-228, OCT-DEC 1972.

3. Kuznetsov, V.K., Emergence of Normal Modes propagating in a Wedge on a
Half Space from the Former to the Latter. Soviet Physics Acoustics, 19(3).
pp 241-245, NOV-DEC 1973.

4. Pierce, A.D., Extension of the Method of Normal Modes to Sound
Propagation in an Almost-Stratified Medium. Jour.Acoust.Soc.Am., 37.
1965.

5. Milder, D.M., Ray and Wave Invariants for SOFAR Channel Propagation.
Jour. Acoust. Soc.Am., 46, p 1259, 1969.

6. Graves, R.D., Nauli A., and Uberall, H., Range-Dependent Normal Modcs
in Underwater sound Propagation: Application to the Wedge -Shaped
Ocean. Jour.Acoust.Soc.Am., 58(6), pp.1171-1177, December 1975.

7. Coppens, A.B., Sanders, J.V., Ioannou, I., and Kawamura, W., Programs for
the Evaluation of the Acoustic Pressure Amplitude and Phase at the Bottom
of a Wedge-Shaped Fluid Layer Overlaying a Fast Fluid Half Space. Naval
Postgraduate School Report 61-79--002,December 1978.

8. Rubano, L., Acoustic Propagation in Shallow Water Over a Low Velocity
Bottom. Jour.Acoust.Soc.Am., 67(5), pp.1608-1613, May 1980.

9. Jensen, F.B., and Kuperman, W.A., Sound Propagation in a Wedgc-Shap~d
Ocean with a Penetrable Bottom. Jour.Acoust.Soc.Am., 67(5), pp.1566., May
1980.

10. Pierce, A.D., Guided Mode Disappearance During Upslope Propagation in
Variable Depth Shallow Water Overlying a Fluid Bottom. Jour.Acoust. Soc.
Am., 72(2), pp.523-531, August 1982.

11. Arnold, J.M., and Felsen, L.B., Rays and Local Modes in a Wedge-Shaped
Ocean. Jour.Acoust.Soc.Am., 73(4), pp.1105-1119, April 1983.

12. Coppens, A.B., Humphries, M.,and Sanders, J.V., Propagation of sound out
of a fluid wedge into an underlying fluid substrate of greater sound speed.
Jour.Acoust.Soc.Am., 76(5), pp 1456-1465, November 1984.

70



13. Baek., C.K., The Acoustic Pressure in a Wedge-Shaped Water Lay-r
Overlying a Fast Fluid Bottom. M.S.Thesis, Naval Postgraduate School.
Monterey, California, March 1984.

14. LeSesne, P.K., Development of Computer Programs Using the Method of
Images to Predict the Sound Field in a Wedge Overlying a Fast Fluid and
Comparison with Laboratory Experiments. M.S.Thesis, Naval Postgraduate
School, Monterey, California, December 1984.

15. Borchardt, J.A., Measurements of the Acoustic Pressure Everywhere Over a
Modeled Continental Slope. M.S.Thesis, Naval Postgraduate School.,
Monterey, California, December 1985.

16. Tindle, C.T., Hobaek, H., and Muir, T.G., Downslope Propagation of Normal
Modes in a Shallow Water Wedge. Jour.Acoust.Soc.Am., 81(2), pp 275-286.
February 1987.

17. Kaswandi, C., Computerized Investigation Using the Method of Images to
Predict the Sound Field in a Fluid Wedge Overlying a Slow Fluid Half
Space. M.S.Thesis, Naval Postgraduate School, Monterey, California, 1987.

18. Li Yu Ming, Acoustic Pressure Distribution on the Bottom of a
14'edge -Shaped Ocean. M.S.Thesis, Naval Postgraduate School, Monterey.
California, December 1987.

19. Doolittle, R, Tolstoy, A., and Buckingham, M., Experimental Confirmation
of Horizontal Refraction of CW Acoustic Radiation from a Point Source in a
Wedge-shaped Ocean Environment. Jour.Acoust.Soc.Am., 83(6). pp
2117-2125, June 1988.

20. Kinsler, Frey, Coppens and Sanders, Fundamentals of Acoustics. John Wiley
& Sons, Third Edition, 1982.

21. Brekhovskikh, L.M., Waves in Layered Media. P.18, Academic Press, 1960.

22. Tolstoy I., and Biot M.A., Formulation of Wave Propagation in Infinit
Media by Normal Coordinates with an Application to Diffraction.
Jour.Acoust.Soc.Am., 29(3), pp.3870, 1956.

23. Personal Communication with A.B. Coppens and J.V.Sanders. Naval
Postgraduate School, Monterey, CA 93940, March 1989.

71



INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center 2
Cameron Station
Alexandria,Virginia 22304-6145

2. Library, Code 0142 2
Naval Postgraduate School
Monterey, California 93943-5002

3. Department Library, Code 61 2
Department of Physics and Chemistry
Naval Postgraduate School
Monterey, California 93943-5002

4. Dr. A. B. Coppens, Code 61Cz 2
Department of Physics and Chemistry
Naval Postgraduate School
Monterey, California 93943-5002

5. Dr. J. V. Sanders, Code 61Sd 2
Department of Physics and Chemistry
Naval Postgraduate School
Monterey, California 93943-5002

6. Dr. A.A.Atchley, Code 6lAy 1
Chairman, Acoustics Academic Committee
Naval Postgraduate School
Monterey, California 93943-5002

7. Hellenic Navy General Staff 4
Second Branch. Education Department
Stratopedon Papagou
Athens, GREECE

S. LT. Demetrios Paliatsos H.N. 4
40 Ekklision 2
Bironas,16231
Athens,GREECE

9. A. Tolstoy 1
Acoustics Division,
Code 5120.Naval Research Lab
Washington DC 20375-5000

72



10. M. Buckingham
Royal Aircraft Establishment, Farnborough
Hampshire GU146TD, United Kingdom

11. Rad. Fountoulakis
58 Tanglewood Ln.
Monterey, CA 93940

73


